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1.	Introduction:	Molecular	Approach	to	Viscoelasticity	

1.1	The	Physical	Origin	of	Viscoelasticity	

In	 our	 course	 on	 linear	 viscoelasticity,	 we	 used	 phenomenological	 models	 so	 far	 (springs,	
dashpots)	which	have	no	direct	link	with	what	we	know	already	on	the	physics	of	polymers,	
namely	that	they	are	generally	made	up	of	more	or	less	flexible	molecular	chains.	On	the	other	
hand,	we	have	already	established	 that	an	elastomer,	 i.e.	a	 lightly	crosslinked	 flexible	
polymer	deformed	at	a	temperature	above	its	Tg	behaves	like	an	"entropic"	spring	with	
a	Young's	modulus	

	

where	N	is	the	density	of	crosslinking	points.	We	also	got	a	phenomenological	description	
of	linear	behavior	(with	small	strains)	above	the	glass	transition	according	to	which	the	
modulus	of	relaxation,	for	example,	is	given	by	

𝐸 = 3𝑁𝑘𝑇 
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where	 𝜏i	 are	 "relaxation	 times"	 and	 Ei	 are	 arbitrary	 constants,	 which	 can	 be	 adjusted	 to	
reproduce	the	observed	behavior.	In	the	case	of	an	elastomer,	we	can	assume	that	𝑡	≫	𝜏i	and	
that	E(𝑡)	⟶	𝐸!.	Thus,	by	comparing	the	two	expressions	above,	𝐸! = 3𝑁𝑘𝑇.	We	can	rewrite	
the	above	equation	as	follows:	

	

	

	

	

with	𝛼0	=	1	and	𝜏0(𝑇1)	=	∞.	If	all	𝜏i	show	the	same	dependence	with	T,	we	can	replace	them	by	
𝜏i0𝑓(𝑇):	

	

	

	

Thus,	if	we	know	f(T),	the	𝜏i0,	the	𝛼i	and	E(𝑡2,	𝑇2),	we	can	calculate	Er(𝑡1,	𝑇1)	and	therefore	E(𝑡1,	
𝑇1)	for	any	values	of	𝑡1	and	𝑇1.	This	is	the	principle	of	time-temperature	superposition,1	and	
as	 long	 as	we	 stay	 in	 the	 temperature	window	 immediately	 above	Tg,	we	 can	 use	 the	WLF	
equation	to	obtain	f(T).	This	equation	has	the	advantage	of	being	supported	by	the	theory	of	
free	volume	or	at	least	by	observations	of	the	change	in	viscosity	near	Tg.	

On	the	other	hand,	one	does	not	know	yet	how	to	connect	𝝉𝒊𝒐	and	𝒂𝒊	to	the	structure	of	the	
chains.	In	addition,	in	a	non-crosslinked	polymer	(a	thermoplastic),	there	is	a	rubbery	plateau	
which	is	limited	in	temperature	and	time,	i.e.	that	𝜏0(𝑇)	has	a	finite	value.	How	do	you	explain	
the	existence	of	a	rubbery	plateau	in	the	absence	of	crosslinking	points?	

1.2	Entanglement	

The	answer	to	the	last	question	in	section	1.1	is	"entanglement".	So	far,	we	have	referred	to	
entanglement	 in	rather	vague	 terms,	 sometimes	saying	 that	 the	chains	of	a	molten	polymer	
must	be	 strongly	 "entangled"	 and	are	 significantly	 constricted	due	 to	 the	presence	of	 other	
chains.	We	could	therefore	imagine	that	these	constraints	play	the	same	role	as	the	chemical	
crosslinks	 in	 a	 conventional	 elastomer,	 which	 would	 explain	 the	 existence	 of	 the	 rubbery	

 
1 (In	other	words,	E𝑟(𝑡1,	𝑇1)	=	E(𝑡2,	𝑇2),	i.e.	we	have	the	same	behavior,	when	𝑡1⁄𝑓(𝑇1)	=	𝑡2⁄𝑓(𝑇2)	=	𝑡ref⁄𝑓(𝑇ref)	⟹	
𝑡1⁄𝑡ref	 =	𝑎T(𝑇1,	𝑇ref),	 or,	 in	 the	 frequency	 domain,	𝜔ref⁄𝜔	 =	𝑎T(𝑇,	𝑇ref).	 (For	 recall,	 if	𝑇	>	𝑇ref,	 log	𝑎T(𝑇,	𝑇ref)	<	1	
according	to	the	equation	of	WLF	and	the	curves	of	E𝑟(𝑡)	are	shifted	towards	shorter	times	than	at	𝑇ref,	while	the	
curves	of	E𝑟(𝜔)	are	shifted	to	higher	frequencies	higher	than	𝑇ref) 

E(𝑡) = 𝐸∞ ++𝐸𝑖𝑒
− 𝑡𝜏𝑖

𝑛

1
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E1(𝑡2, 𝑇2) = E(𝑡3, 𝑇3) 56𝛼4𝑒
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plateau.	But	can	we	find	a	more	precise	description	of	this	phenomenon	that	will	allow	us	to	
quantify	the	effect	of	entanglement	on	the	mechanical	behavior	of	a	polymer	and	to	relate	it	to	
the	structure	of	the	polymer?	

1.3	Disentanglement?	

As	it	was	mentioned	at	the	end	of	1.1,	the	rubbery	plateau	has	a	limited	extent	in	temperature	
or	time,	and	the	effective	value	of	𝜏0(𝑇)	is	therefore	not	infinite	for	a	thermoplastic.	Thus,	if	a	
chain	can	be	entangled	with	its	neighbors,	it	can	also	become	“unentangled”	if	its	mobility	is	
high	 enough	 or	 if	 given	 enough	 time.	 This	 disentanglement	 is	 often	 described	 in	 terms	 of	
"reptation",	a	word	that	evokes	the	movement	of	a	snake	(or	reptile)	which	tries	to	squeeze	
between	obstacles.	There	too,	we	would	like	to	find	an	accurate	description	of	this	phenomenon	
in	terms	of	the	polymer	structure	and,	in	particular,	of	its	molar	mass,	since	we	already	know	
that	the	observed	extent	of	the	plateau	depends	strongly	on	M.	

2.	Isolated	Chain	Dynamics	in	a	Solvent:	the	Rouse	Model	

2.1	Isolated	Chains	in	a	Solvent	

The	viscoelastic	behavior	of	 a	very	dilute	 solution	 is	 expected	 to	 reflect	 the	dynamics	of	 an	
isolated	 chain	 as	 long	 as	 it	 interacts	 with	 the	 solvent.	 Rouse	 proposed	 the	 following	
simplification:	 We	 consider	 a	 freely	 jointed	 chain	 containing	 n	 bonds	 divided	 into	 m	-	1	
“subchains”	of	identical	length,	connected	by	m	“balls”,	which	interact	with	the	solvent.	If	the	
subchains	are	long	enough,	they	will	have	a	Gaussian	behavior	and	therefore	a	mean	square	
distance	between	ends	

	

               (1) 

If	the	ends	of	a	given	subchain	are	defined	by	the	vectors	𝑟4 	and	𝑟4<2,	the	force	of	contraction	
acting	along	the	vector	𝑟⃗4<2 − 𝑟4 	is	given	by	

	

               (2) 

The	force	on	the	ball	located	at	𝑟̅i	must	be	in	equilibrium	with	the	viscous	forces	acting	on	this	
ball:	

	

               (3) 

	

𝑅=3 =
𝑛

𝑚 − 1 𝑙
3	

 

𝑓 =
3𝑘𝑇
𝑅=3

(𝑟4<2 − 𝑟4)	

 

𝑓 =
3𝑘𝑇
𝑅:3

(𝑟4 − 𝑟452) +
3𝑘𝑇
𝑅:3

(𝑟⃗4<2 − 𝑟4) = −𝜉
𝑑𝑟⃗4
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3𝑘𝑇
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(2𝑟⃗4 − 𝑟452 − 𝑟4<2)	
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where	the	coefficient	𝜉	is	in	[Ns/m].	There	are	m	such	coupled	equations	for	the	entire	chain.	
In	order	to	solve	them	one	carries	out	a	“transform	of	normal	coordinates”	(see	the	standard	
texts)	to	obtain	m	independent	equations	each	corresponding	to	a	“mode”	of	different	vibration.	
Thus,	for	a	solution	containing	N	independent	chains	per	unit	of	volume:	

	

	

	

	

	

	

	

	

	

	

               (4) 

Here,	each	p	corresponds	to	a	mode	of	vibration	with	p	nodes	along	the	chain.	The	longest	𝜏p	
therefore	corresponds	to	relatively	long	chain	lengths.	We	see	that:	

(i) These	equations	have	the	same	form	as	the	expressions	derived	from	the	Generalized	
Voigt-Maxwell	model,	except	that	here	all	Ei	are	equal	to	NkT.	

(ii) The	dependence	of	all	relaxation	times	𝜏p	with	the	temperature	is	that	of	𝜉(T)/kT.	

(iii) The	choice	of	m	is	arbitrary,	as	long	as	𝑡 ≫ 𝜏>.	

(iv) The	longest	relaxation	time,	𝝉𝟏,	which	involves	the	whole	chain,	called	the	Rouse	
relaxation	time,	is	proportional	to	the	squared	molar	mass,	M2,	because	𝜉𝑚2Rn2	
=	𝜉𝑚𝑛𝑙2	=	𝜉0𝑛2𝑙2	∝	𝑀2,	where	𝜉0	is	the	“monomeric	friction	coefficient”.	

(v) At	 the	 longest	 frequencies,	 we	 find	 the	 liquid	 behavior	 of	 the	 terminal	 regime	 of	
phenomenological	models,	i.e.	G’	~	𝜔2	and	G’’	~	𝜔.	

(vi) At	intermediate	frequencies,	G’	≈	G′′	~	𝜔1/2.	

2.2	Comparison	with	Experiments	

Initially,	 this	model	was	 intended	 to	 describe	 the	 behavior	 of	 a	 dilute	 solution.	We	 can	 do	
rheological	measurements	and	determine	G’	and	G’’	and	we	can	also	determine	the	diffusion	
coefficient	of	chains,	which	is	given	by	

G(𝑡) = 𝑁𝑘𝑇6𝑒
5 6
7(

>

@A2

	

G′(𝑡) = 𝑁𝑘𝑇6
𝜔3𝜏@3

1 + 𝜔3𝜏@3

>

@A2

 

G′′(𝑡) = 𝑁𝑘𝑇6
𝜔𝜏@

1 + 𝜔3𝜏@3

>

@A2

 

τ@ =
𝜉𝑅=3

24𝑘𝑇 sin
53 O

𝜋𝑝
2(𝑚 + 1)R ,			𝑝 = 1,2…𝑚 

≈
𝜉𝑚3𝑅=3

6𝜋3𝑝3𝑘𝑇 	for	𝑚 ≫ 1, 𝑝 
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               (5) 

according	to	Rouse's	model	(see	standard	texts	for	development).	However,	experiments	rather	
show	that	𝐷	∝	𝑀-1/2	and	𝜏1	∝	𝑀3/2.	Rouse's	model	doesn't	work	for	diluted	solutions.	Indeed,	
we	get	a	better	agreement,	when	we	take	the	influence	of	the	chain	on	the	local	speed	of	the	
solvent	into	account,	like	in	Zimm's	theory,	which	we	will	not	consider	here.	

In	contrast,	the	Rouse	Model	is	well	suited	for	non-crosslinked	polymers	above	Tg	(where	
the	"solvent"	consists	of	other,	relatively	small	mobile	chains),	as	shown	on	Slide	276,	where	
we	find	the	same	dependence	with	𝜔,	provided	that	

(i) The	molar	mass,	M,	is	not	too	high.	Otherwise,	we	observe	a	rubbery	plateau,	which	
is	not	predicted	by	the	Rouse	model.	

(ii) The	time	(or	1/𝜔)	is	not	too	short,	because	the	Rouse	model	is	not	applicable	at	very	
short	time	scales	

At	the	shortest	times,	the	behavior	is	dominated	by	the	shortest	𝜏4 	and	therefore	the	values	of	
p	are	high	according	to	Equation	4.	However,	 if	the	number	of	n/p	segments	involved	in	the	
relaxation	becomes	too	low	(typically	<	8),	we	can	no	longer	use	Equation	2	and	the	model	is	
no	longer	valid.	

3.	Entanglement	and	Disentanglement	

The	 Rouse	 Model	 is	 only	 valid	 for	 relatively	 small	M	 because	 it	 does	 not	 consider	
entanglement,	 i.e.	 the	phenomenon	 that	 explains	 the	existence	of	 the	 rubbery	plateau.	But	
what	is	entanglement?	

3.1	Physical	Constraints	for	a	Chain	in	a	Condensed	Polymer	

It	is	assumed	that	the	chains	of	an	amorphous	polymer	adopt	a	Gaussian	conformation	in	the	
condensed	state	(molten	state,	glassy).	We	did	a	little	calculation	for	a	typical	polymer	(Slide	
282),	 which	 establishes	 that	 the	 chains	 are	 strongly	 interpenetrated,	 i.e.	 that	 the	 volume	
occupied	by	a	random	coil	which	has	a	radius	of	gyration,	rg,	contains	on	average	dozens	of	
other	chains.	If	we	admit	that	one	chain	cannot	cross	another,	we	can	consider	that	one	given	
chain	is	trapped	in	sort	of	a	“cage”	made	up	from	its	neighbors	(cf.	Slide	283).	We	can	therefore	
imagine	that	the	dynamics	of	each	chain	are	strongly	influenced	by	these	constraints,	even	at	
temperatures	well	above	Tg	where	it	is	assumed	that	the	deformations	do	not	involve	a	change	
of	internal	energy.	These	constraints	must	be	particularly	severe	when	it	comes	to	cooperative	
movements	involving	long	chain	lengths,	that	is	for	the	first	Rouse	modes	(p	=	1,	2,	…).	

	

𝐷B =
𝑘𝑇
𝜉𝑚 =

𝑘𝑇
𝜉;𝑛

∝
1
𝑀	
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3.2	First	notions	of	entanglement:	static	models	

First,	we	can	make	an	analogy	between	the	rubbery	plateau	of	a	non-crosslinked	polymer	and	
the	modulus	of	an	elastomer,	assuming	that	the	constraints	on	a	chain	due	to	its	neighbors	act	
as	cross-linking	points.	The	process	is	then	very	simple:	we	define	an	"entanglement	density",	
Ne,	according	to	

	

               (6), 

where	𝐸e	is	the	Young’	modulus2	which	corresponds	to	the	rubbery	plateau	(in	fact,	the	plateau	
is	not	perfectly	flat	but	that	doesn't	matter	too	much	here).	

This	is	the	model	of	the	"entanglement	network"	whereby	a	non-crosslinked	polymer	is	
considered	 as	 a	 network	 of	 subchains	 of	 average	 molar	 mass	Me,	 called	 the	 "mass	
between	entanglements”	linked	by	“entanglement	points”.	

Obviously,	if	M	<	2Me	=	Mc,	the	chains	are	not	long	enough	to	constitute	a	network	and,	indeed,	
we	 do	 not	 observe	 a	 rubbery	 plateau	 under	 these	 conditions	 (using	 Me	 estimated	 from	
measurements	on	very	long	chains).	Me	is	therefore	a	key	parameter,	because	it	marks	the	
threshold	of	M	where	the	characteristic	properties	of	long	chains	begin	to	be	manifested.	
We	will	see	next	week	that	Me	is	very	important	for	the	resistance	to	large	deformations,	for	
example,	as	well	as	for	the	behavior	in	the	liquid	state	(i.e.	beyond	the	rubbery	plateau).	

Me	and	the	density	of	entanglements,	Ne,	are	specific	parameters	of	each	type	of	polymer,	
but	vary	greatly	depending	on	the	polymer,	as	shown	in	the	table	(cf.	Slide	285).	

Table	1.	Characteristic	parameters	of	common	thermoplastics	

 
2 We	can	also	measure	𝐺𝑒	for	example,	in	which	case	𝐺𝑒	=	𝑁𝑒𝑘𝑇. 

𝐸C = 3𝑁C𝑘𝑇 
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Establishing	 correlations	 between	 the	 chemical	 structure	 of	 the	 polymer	 and	Me	 is	 not	 as	
obvious	as	in	the	case	of	Tg	and	Tm.	Nevertheless,	we	notice	that	two	factors	are	important,	the	
rigidity	of	the	chain	and	the	number	of	chains	per	unit	volume.	Thus,	rigid	chains	with	a	low	
molar	mass	 per	 catenary	 bond,	Mb,	 may	 show	 a	 higher	 entanglement	 density	 than	 flexible	
chains	with	a	rather	high	Mb	(compare	polyethylene	and	polycarbonate	in	Table	1).	On	the	other	
hand,	 bulky	 chains,	 yet	 not	 particularly	 rigid,	 show	 low	 entanglement	 densities	 (cf.	
polystyrene).	This	has	led	to	attempts	to	establish	empirical	relationships	between	Me,	C∞	and	
Mb,	such	that	Me	=	3MbC∞2,	but	the	correlations	are	not	strong	enough	for	this	kind	of	equation	
to	be	really	reliable.	

Finally,	 in	 the	 case	 of	 an	 elastomer,	 entanglements	 are	 also	 present	 and	 contribute	 to	 the	
effective	crosslinking	density	as	follows	

	

               (7), 

where	 Nx	 is	 the	 density	 of	 chemical	 crosslinks,	 although	 we	 tend	 to	 ignore	 the	 effect	 of	
entanglement	in	the	theory	on	rubber	elasticity.	

3.3	Disentanglement:	the	Tube	Model	

So	far,	our	static	model	explains	the	existence	of	the	rubbery	plateau	in	thermoplastics,	but	we	
haven't	explained	why	the	extent	of	this	rubbery	plateau	is	limited.	At	the	same	time,	we	can	
wonder	whether	the	notion	of	"points"	of	entanglement	has	some	physical	reality.	Indeed,	we	
need	 to	 give	 up	 in	 considering	 entanglements	 like	 well	 located	 "knots"	 in	 space.	 The	
entanglement	network	is	useful	in	some	contexts,	but	it	is	only	a	static	model,	and	as	such	it	is	
not	very	helpful	in	understanding	"disentanglement"	at	the	end	of	the	plateau,	which	is	clearly	
a	dynamic	phenomenon.	

We	will	therefore	use	the	idea	of	a	cage	formed	around	a	given	chain	by	its	neighbors	(Slide	
288).	For	a	very	long	chain,	this	cage	takes	the	form	of	a	tube.	The	chain	cannot	pass	through	
the	walls	of	this	tube,	but	if	it	has	some	mobility	it	can	escape	from	the	tube	at	its	ends,	which	
remain	open.	As	the	tube	follows	the	contour	of	the	chain,	its	contour	length,	L,	must	also	be	
proportional	to	n,	the	total	number	of	bonds	in	the	chain,	and	therefore	to	M.	

Suppose	now	that	we	apply	a	deformation	to	the	polymer	and	therefore	to	the	tube	and	that	we	
follow	 the	 evolution	 of	 the	 stress	 (a	 relaxation	 test,	 therefore).	 To	 relax	 the	 stress	 after	
deformation	of	the	tube,	a	deformed	chain	must	regain	its	random	conformation.	However,	it	
cannot	pass	through	the	walls	of	the	deformed	tube.	If	the	tube	has	a	diameter	of	de,	this	implies	
that	 only	 chain	 segment	 lengths	 equal	 or	 less	 than	 de	 can	 relax,	 ie.	 adopt	 a	 random	
conformation.	We	will	now	show	that	𝑑e	corresponds	to	a	length	of	a	chain	with	mass	Me.	

Let’s	use	Rouse’s	model	(Equation	4).	Assuming	that	the	chain	gets	stuck	in	the	deformed	tube:	

𝑁C8852 = 𝑁C52 + 𝑁D52 
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               (8). 

	
	

So	if:	 	
               (9), 

I.e.	in	the	rubbery	plateau:	
	

	

	

	

	
Thus,	the	tube	diameter,	de,	is	the	distance	between	the	ends	of	a	chain	with	Me,	and	the	
tube	itself	is	therefore	a	random	chain	with	a	contour	length	
	
               (10). 

However,	the	chain	does	not	remain	blocked	in	the	tube,	but	leaves	the	tube	after	a	time	
𝝉𝒅,	 called	 the	 "disentanglement	 time"	or	 "reptation	 time".	We	 can	obtain	 a	 very	 simple	
scaling	law	for	𝜏d	by	remembering	Equation	5,	which	tells	us	that	the	diffusion	coefficient,	D,	is	
proportional	 to	 1/M	 according	 to	 the	 Rouse	 model,	 and	 that	 the	 length	 of	 the	 tube,	 L,	 is	
proportional	to	M.	According	to	Fick's	law,	the	diffusion	distance	by	the	chain	at	a	time	t	is	

               (11). 

The	chains	can	thus	diffuse	a	distance	L	and	therefore	escape	from	its	tube	in	one	step	
	
               (12), 
	

where	𝜏e	is	the	time	of	the	start	of	the	rubbery	plateau	(Equation	9).3	

 
3 In	the	more	rigorous	treatment	of	Doi	and	Edwards,	for	example,	we	obtain	

G(𝑡) = 𝑁𝑘𝑇6𝑒
5 6
7(

>

@A2

	

𝜏@ ≈
𝜉𝑚3𝑅=3

6𝜋3𝑝3𝑘𝑇 				for	
𝑛𝑙3

𝑝 ≤ 𝑑C3 

𝜏@ = ∞				for	
𝑛𝑙3

𝑝 > 𝑑C3 

𝑡 ≫ 𝜏C =
𝜉𝑚3𝑅=3

6𝜋3𝑘𝑇 ×
𝑑CF

𝑛3𝑙F =
𝜉𝑚𝑑CF

6𝜋3𝑘𝑇𝑛𝑙3 =
𝜉;𝑑CF

6𝜋3𝑘𝑇𝑙3 =
𝜉;𝑙3

6𝜋3𝑘𝑇 O
𝑀C

𝑀G
R
3

 

G(𝑡) = 𝑁𝑘𝑇
𝑛𝑙3

𝑑C3
≡ 𝑁C𝑘𝑇	

𝑛𝑙3

𝑑C3
=
𝑁C
𝑁 =

𝑀
𝑀C

 

𝐿 =
𝑀

𝑀𝑒
𝑑C 	

𝑥 = √𝐷𝑡 

𝜏H ≈
𝐿3

𝐷B
=
𝜉;𝑛
𝑘𝑇 O

𝑀
𝑀C
R
3

𝑑C3 = 6𝜋3 O
𝑀
𝑀C
R
I

𝜏C 

𝜏* = 36
𝑀
𝑀+
7
,

𝜏+ 
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Once	the	chain	is	outside	the	tube,	it	can	return	to	its	random	conformation,	and	the	stress	will	
be	 completely	 relaxed.	 In	 a	 simple	 description,	 therefore,	we	 can	 simply	 replace	 the	Rouse	
relaxations,	which	are	blocked	by	the	tube,	by	a	term	involving	𝜏d	or	

	

               (13). 
	

We	can	thus	summarize	the	behavior	during	a	relaxation	test	as	shown	schematically	on	Slide	
290.	

(i) Instant	tube	and	chain	deformation	(no	relaxation,	high	stress)	

(ii) Rapid	Rouse-type	relaxation	inside	the	tube	up	to	t	=	𝜏e	

(iii) Rubbery	plateau	for	𝜏e	<	𝑡	<	𝜏d	

(iv) The	chain	begins	to	escape	from	the	tube	when	t	=	𝜏d	(reptation)	

(v) Fully	restored	random	conformation,	relaxation	terminated	when	t	>>	𝜏d	

We	 therefore	 have	 a	 complete	 description	 of	 the	 observed	 behavior	 of	 a	 non-crosslinked	
polymer	 of	 mass	M	>	Me	 in	 relaxation	 as	 well	 as	 for	 an	 elastomer	 if	 𝜏d	 is	 infinite	 and	 de	
corresponds	to	the	effective	distance	between	crosslinking	points.	

We	 are	 not	 going	 to	 discuss	 other	 viscoelastic	 phenomena	 here,	 but	 we	 have	 already	
reproduced	important	results	of	the	tube	theory	developed	by	DeGennes	and	Doi	and	Edwards	
in	the	1970s,	which	provides	a	fairly	complete	description	of	viscoelasticity	of	polymers	above	
Tg,	including	the	non-linear	behavior.	The	general	formulation	of	this	theory	is	rather	complex,	
but	is	the	basis	of	many	numerical	simulations	which	are	widely	used	in	industry	for	modelling	
of,	for	example,	the	filling	of	a	mold.	

What	are	these	important	results?	First,	the	time	to	disentangle	(or	the	reptation	time)	𝜏d	is	
proportional	 to	M3,	 while	 the	 time	 𝜏e,	 which	 corresponds	 to	 the	 start	 of	 the	 rubbery	
plateau,	 depends	 only	 on	 de	 and	Me	 (Equation	 9).	 Thus,	 by	 increasing	M,	 one	 greatly	
increases	the	extent	of	the	rubbery	plateau.	However,	both	show	the	same	dependence	with	
temperature	 and	 the	 time	 temperature	 superposition	 can	 therefore	 be	 justified	 until	 the	
transition	zone,	even	in	the	presence	of	the	rubbery	plateau.	We	also	see	that	a	chain	with	𝑴 ≲
𝑴𝒆	does	not	have	a	rubbery	plateau,	in	accordance	with	experiments	and	the	network	
model.	

Other	important	results,	which	have	been	verified	by	experiments:	

Self-Diffusion	Coefficient	of	an	Entangled	Chain	

G(𝑡) = 𝑁𝑘𝑇f𝑒5
6
7- + 6 𝑒5

6
7-

H.'/:L'

@A2

g	
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When	the	chain	 leaves	 its	 inner	tube	 in	 the	time	𝜏d,	 its	center	of	mass	moves	by	an	average	
distance	 of	 approximately	 Rn.	 According	 to	 Fick's	 law	 (Equation	 11),	 the	 self-diffusion	
coefficient	is	therefore	

	

               (14). 
	

Viscosity	in	the	Terminal	Zone	

In	the	regime	of	viscous	behavior	(𝑡	≫	𝜏d),	the	theory	of	Doi	and	Edwards	predicts	that	

	

	

	

               (15). 
	

So,	there	is	a	change	in	slope	of	the	𝜂	vs.	M	curve,	when	M	is	equal	to	Mc,	which	is	called	the	
critical	molar	mass.	This	is	verified	for	amorphous	polymers,	and	provides	a	way	to	obtain	Me	
for	semi-crystalline	polymers,	where	the	rubbery	plateau	is	obscured	by	crystallinity	and	we	
cannot	measure	Ee.	In	practice,	we	rather	observe	𝜂 = 𝜂;(𝑀M/𝑀C)I.F	when	𝑀M > 𝑀O ,	but	this	
can	be	explained	by	the	dispersity	and	the	fact	that	the	tube	is	not	completely	immutable,	as	it	
itself	is	made	up	of	chains	capable	to	diffuse.	What	is	important,	especially	for	the	processing,	
is	that	the	viscosity	is	very	strongly	dependent	on	the	molar	mass.	So,	if	the	ultra-high	molecular	
weight	polyethylene	(UHMWPE)	is	highly	praised	for	its	mechanical	performance,	it	cannot	be	
injected	because	its	viscosity	is	too	high.	On	the	other	hand,	an	HDPE	of	low	molar	mass	is	easy	
to	process,	but	risks	to	perform	in	a	disappointing	manner,	particularly	in	creep.	

4.	Summary	

• Isolated	chains	may	be	described	using	 the	Rouse	model	 (springs	and	beads):	better	
agreement	with	dynamics	in	dilute	solution	when	hydrodynamic	interactions	are	taken	
into	account	(Zimm	model)	

• For	sufficiently	long	chains	in	the	condensed	state,	entanglement	effects	must	be	taken	
into	account.	The	existence	of	a	rubbery	plateau	above	Tg	for	non-crosslinked	polymers	
has	led	to	the	idea	of	the	“entanglement	network”	and	Me.	For	M	<	2Me,	entanglement	
effects	are	not	seen.	

• For	sufficiently	long	times	and/or	at	sufficiently	high	temperatures,	entanglements	can	
no	 longer	be	considered	permanent.	General	descriptions	of	viscoelasticity	use	 “tube	

𝐷 =
𝑟;3

𝜏H
~
𝑀
𝑀I~𝑀

53	

𝜂~O
𝑀
𝑀C
R
I

; 			𝑀 > 𝑀O ≡ 2𝑀C 	

𝜂~
𝑀
𝑀C

; 			𝑀 ≤ 𝑀O ≡ 2𝑀C 	
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models”	which	allow	 for	disentanglement	by	 reptation.	These	 account	 for	 the	 strong	
influence	of	M	on	the	melt	viscosity,	diffusion	etc.	

	


